

Morphogenesis of Highly Uniform CoCO₃ Submicrometer Crystals and Their Conversion to Mesoporous Co₃O₄ for Gas-Sensing Applications

Cheng Chao Li, †,‡ Xiao Ming Yin,‡ Tai Hong Wang,‡ and Hua Chun Zeng*,†

[†]Department of Chemical and Biomolecular Engineering, KAUST-NUS GCR Program, and Minerals, Metals, and Materials Technology Center, Faculty of Engineering, National University of Singapore, 10 Kent Ridge Crescent, Singapore 119260, and *Key Laboratory for Micro-Nano Optoelectronic Devices of Ministry of Education and State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha, 410082, P.R. China

Received July 14, 2009. Revised Manuscript Received September 2, 2009

Transition metal nitrates, carbonates, hydroxides, hydroxyoxides, and so forth are often used as solid precursors to synthesize their respective nanostructured metal-oxides after chemical/thermal conversion. However, synthesis of submicrometer uniform crystalline particles of this class of compound intermediates remains as a challenging but less studied area in nanomaterials research. In this work, we report a polyol process for controlled growth of cobalt carbonate (CoCO₃). A preparative investigation on morphogenesis of CoCO₃ crystals has been carried out, and three types of highly uniform CoCO₃ products (i.e., peanut-like, capsule-like, and rhombus crystals) in the submicrometer region have been synthesized at 200 °C under batch conditions. Uniform particles of tricobalt tetroxide (Co₃O₄) have also been obtained at 300 °C from the CoCO₃ submicrometer crystals after thermal transformation in laboratory air. The Co₃O₄ powder products possess mesoporosity and essentially preserve the pristine morphologies of their respective solid precursors. Due to high crystal uniformity and specific surface areas in the range of 140-149 m²/g, the mesoporous Co₃O₄ exhibits enhanced performances for ethanol and carbon monoxide sensing.

Introduction

Over the past two decades, synthesis of nanoscale materials has received considerable attention in the materials research community, because electrical, optical, magnetic, and catalytic properties of the matters in this spatial scale are uniquely different from those of their corresponding bulk counterparts.^{1–14} Among the numerous inorganic nanomaterials synthesized, a significant research endeavor has been devoted to prepare discrete freestanding nanoparticles, nanostructures, or their complex assemblies. For instance,

many preparative methods have been developed to synthesize nanomaterials with different morphologies and architectures, such as nanoparticles, nanocubes, nanoframes, nanowires, nanobelts, nanorods, nanoflowers, nanoarrays, complex and hierarchical assemblages, and so on,4-11 targeted directly at final functional materials and their improved properties. The morphological control, including spatial size, product shape, surface structure, and crystal orientation, of nanomaterials is of fundamental importance apart from their chemical compositions. 12-14

Compared to the morphogenesis of discrete freestanding nanoparticles and nanostructures, morphological control of solid intermediate compounds receives much less attention. This is because in part the characterization of solid intermediates is not commonly considered to be important and in part morphologies of final products are normally different from their solid precursors due to crystallite grain boundary growth and/or agglomeration after conversion. 15-19 For example, inorganic salts such as metal nitrates and carbonates have long been used as solid precursors to prepare functional metal oxides and advanced ceramic materials through cycles of thermal annealing to deplete existing porosity and obtain high density products.²⁰ In the

- *Corresponding author. Tel.: (65) 6516-2896. Fax: (65) 6779-1936. E-mail: chezhc@nus.edu.sg.
- (1) Sun, S. H.; Jaouen, F.; Dodelet, J. P. Adv. Mater. 2008, 20, 3900.
- (2) Kuang, Q.; Lao, C. S.; Wang, Z. L.; Xie, Z. X.; Zheng, L. S. J. Am. Chem. Soc. 2007, 129, 6070.

- Chem. Soc. 2007, 129, 6070.
 (3) Li, H. X.; Bian, Z. F.; Zhu, J.; Zhang, D. Q.; Li, G. S.; Huo, Y. N.; Li, H.; Lu, Y. F. J. Am. Chem. Soc. 2007, 129, 8406.
 (4) Liu, B.; Zeng, H. C. J. Am. Chem. Soc. 2003, 125, 4430.
 (5) Wang, X.; Li, Y. D. J. Am. Chem. Soc. 2002, 124, 2880.
 (6) Lee, C. H.; Kim, M.; Kim, T.; Kim, A.; Paek, J.; Lee, J. W.; Choi, S. Y.; Kim, K.; Park, J. B.; Lee, K. J. Am. Chem. Soc. 2006, 128, 9326.
 (7) Liu, H.; Hu, C. G.; Wang, Z. L. Nano Lett. 2006, 6, 1535.
 (8) Oxtermann, R.; Li, D.; Yin, Y. D.; McCann, J. T.; Xia, Y. N. Nano Lett. 2006, 6, 1297
- Lett. **2006**, 6, 1297.
- (9) Kolmakov, A.; Klenov, D. D.; Liach, Y.; Stemmer, S.; Moskovits,
- Kolinakov, A., Kellov, D. D., Liach, F., Steinlifer, S., Moskovits, M. Nano Lett. 2005, 5, 667.
 Joshi, R. K.; Kruis, F. E. Appl. Phys. Lett. 2006, 89, 153116.
 Ma, J. F.; Liang, Z.; Qiao, X. Q.; Deng, Q. L.; Tao, D. Y.; Zhang, L. H.; Zhang, Y. K. Anal. Chem. 2008, 80, 2949.
 Wu, B. H.; Guo, C. Y.; Zheng, N. F.; Xie, Z. X.; Stucky, G. D. J. Am. Chem. Soc. 2008, 130, 17563.
- (13) Han, X. G.; Kuang, Q.; Jin, M. S.; Xie, Z. X.; Zheng, L. S. *J. Am. Chem. Soc.* **2009**, *131*, 3152.
- (14) Yang, H. G.; Zeng, H. C. Angew. Chem., Int. Ed. 2004, 43, 5930.
- (15) Xu, Z. P.; Zeng, H. C. J. Mater. Chem. 1998, 8, 2499.

- Xu, Z. F., Zeng, H. C. J. Mater. Chem. 1996, 8, 2499.
 Zeng, H. C.; Lim, Y. Y. J. Mater. Res. 2000, 15, 1250.
 Xu, Z. P.; Zeng, H. C. J. Phys. Chem. B 2000, 104, 10206.
 Xu, Z. P.; Zeng, H. C. Chem. Mater. 2000, 12, 3459.
 Xu, R.; Zeng, H. C. J. Phys. Chem. B 2003, 107, 12643.
 Kingery, W. D.; Bowen, H. K.; Uhlmann, D. R. Introduction to Ceramics, 2nd ed.; John Wiley: New York, 1976.

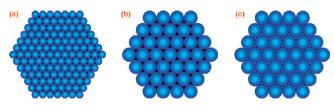


Figure 1. Schematic illustrations of spherical metal oxides prepared from solid precursors: (a) with small uniform particle size, (b) with large uniform particle size, and (c) with nonunifrom particle sizes. Only one layer is shown in these hexagonal close packed arrangements.

preparation of porous materials, nevertheless, it would be highly desirable to make precursor solids into uniform particles if final products can reserve their pristine crystal morphologies. In Figure 1a,b, we use hexagonal close packing of perfect spherical particles (other nonspherical particles such as ellipsoidal particles can be considered as some forms of deviation from these "perfect particles" as an example to address this point. As illustrated, perfect spheres can provide the least dense packing scheme, giving away approximately 26% of the total volume as free void space, on the basis of a simple geometric calculation.²² Interestingly, the existence of this free void space is independent of the size of spherical particles as long as they are uniform and closely packed (i.e., Figure 1a,b).²² On the other hand, in Figure 1c, nonuniform spheres with varying particle sizes might offer lower accessibility to reacting chemicals because the voids could be filled up with smaller particles, and interparticle space provided by them is thus lesser. Possibly, furthermore, there is a lower rate of material utilization if the particles are large (Figure 1b vs a) due to a smaller surface-area-to-bulk ratio for larger ones. Other more complex packings of particles with varying sizes can be found in the literature.²² Apart from the free void space for reacting chemicals, small-sized monodisperse particles will allow a better utilization of materials, as larger specific surface areas can be attained if the size of particles is reduced. Therefore, use of small uniform particles is believed to be beneficial in terms of mass transport of reactants/products and cost of materials when chemical reactions are involved.

In this work, we report an investigation on the morphogenesis of cobalt carbonate (CoCO₃) submicrometer crystals and related preparation of highly uniform polycrystalline oxide particles of tricobalt tetroxide (Co_3O_4) for gas sensing applications. The targeted spinel is an important p-type oxide semiconductor and has aroused extensive research interest in recent years due to its potential applications as gas sensors, catalysts, electrochromic

(21) (a) Buchalter, B. J.; Bradley, R. M. Phys. Rev. A 1992, 46, 3046. (b) Coelho, D.; Thovert, J.-F.; Adler, P. M. Phys. Rev. E 1997, 55, 1959.

(a) de Larrard, F. Concrete Mixture Proportioning: A Scientific Approach. Modern Concrete Technology Series, No. 9; E & FN SPON: London, U.K., 1999. (b) A simple mathematical derivation is as follows. Face centered cubic unit cell: 4 spheres per unit cell (R is radius of sphere). Volumn of unit cell (face centered cubic): $V_2 = [2(\sqrt{2})R]^3 = 16(\sqrt{2})R^3$. Volumn of spheres inside unit cell: $V_1 = 4(4/3)\pi R^3 = (16/3)\pi R^3$. Volumn of void space: $V_2 - V_1 = 16(\sqrt{2})R^3 - (16/3)\pi R^3 = (16/3)\pi R^3$. $[16(\sqrt{2}) - (16/3)\pi]R^3$

$$\frac{V_2 - V_1}{V_2} = \frac{\left(16\sqrt{2} - \frac{16}{3}\pi\right)R^3}{16\sqrt{2}R^3} = \frac{\sqrt{2} - \frac{\pi}{3}}{\sqrt{2}} \approx 26\%$$

$$\frac{V_1}{V_2} = \frac{\frac{16}{3}\pi R^3}{16\sqrt{2}R^3} = \frac{\pi}{3\sqrt{2}} \approx 74\%$$

devices, and magnetic materials. 15-19,23-30 Many novel synthetic methods have been in place to make nanostructured Co₃O₄ with different morphologies.^{31–47} Among them, a two-step approach is often adopted: (i) solid precursors containing cobalt are first synthesized, and (ii) they are then thermally converted to Co₃O₄. In particular, cobalt hydroxide, cobalt-nitrate-hydroxide, cobalt-nitrate-carbonate-hydroxide, and cobalt hydroxyoxide have been synthesized and demonstrated to be effective solid precursors to make Co₃O₄. ^{37–46} However, the reports on synthesis of CoCO₃ and using it to generate Co₃O₄ are rare. ⁴⁷ To the best of our knowledge, synthesis of highly uniform CoCO₃ with particle size in the submicrometer range has not been succeeded. Herein, we developed a polyol process for controlled growth of CoCO₃ crystals. More specifically, morphogenesis of CoCO₃ has been achieved through investigating synthetic parameters, and three types of highly uniform crystals in the submicrometer region have been prepared at 200 °C under batch conditions. The as-grown CoCO₃ can then be converted to phase-pure mesoporous Co₃O₄ at a relatively low temperature of 300 °C while maintaining their pristine shapes essentially unchanged. As a result of high crystal uniformity and specific surface areas (in the range of 140-149 m²/g), the derived Co₃O₄ shows excellent performances for ethanol and carbon monoxide sensing.

Experimental Section

All chemicals were of analytical grade and used as received without further purification. In a typical synthesis, 0.25 g of cobalt acetate tetrahydrate [Co(CH₃COO)₂·4H₂O; Nacalai

- (23) Dong, Z.; Fu, Y. Y.; Han, Q.; Xu, Y. Y.; Zhang, H. J. Phys. Chem. C **2007**, *111*, 18475.
- Binotto, G.; Larcher, D.; Prakash, A. S.; Urbina, R. H.; Hegde,
- M. S.; Tarascon, J. M. *Chem. Mater.* **2007**, *19*, 3032.
 (25) Zhan, F. M.; Geng, B. Y.; Guo, Y. J. *Chem.—Eur. J.* **2009**, *15*, 6169.
 (26) Xiong, S. L.; Yuan, C. Z.; Zhang, X. G.; Xi, B. J.; Qian, Y. T. *Chem.—Eur. J.* **2009**, *15*, 5320.
- Cao, D. X.; Chao, J. D.; Sun, L. M.; Wang, G. L. J. Power Sources
- 2008, 179, 87. (28) Li, W. Y.; Xu, L. N.; Chen, J. Adv. Funct. Mater. 2005, 15, 851.
- (29) Wollenstein, J.; Burgmair, M.; Plescher, G; Sulima, T.; Hildenbrand, J; Bottner, H.; Eisele, I. Sens. Acuators, B 2003, 93, 442
- (30) Jana, N. R.; Chen, Y. F.; Peng, X. G. Chem. Mater. 2004, 16, 3931. (31) He, T.; Chen, D. R.; Jiao, X. L.; Xu, Y. Y.; Gu, Y. X. Langmuir **2004**, 20, 8404.

- 2004, 20, 8404.
 (32) He, T.; Chen, D. R.; Jiao, X. L. Chem. Mater. 2004, 16, 737.
 (33) Chen, C. H.; Abbs, S. F.; Morey, A.; Sithambaram, S.; Xu, L. P.; Garces, H. F.; Hines, W. A.; Suib, S. L. Adv. Mater. 2008, 20, 1205.
 (34) Hu, L. H.; Peng, Q.; Li, Y. D. J. Am. Chem. Soc. 2008, 130, 16136.
 (35) Li, Y. G.; Tan, B.; Wu, Y. Y. J. Am. Chem. Soc. 2006, 128, 14258.
 (36) Tüysüz, H.; Comotti, M.; Schüth, F. Chem. Commun. 2008, 14, 4022.
- (37) Nethravathi, C.; Sen, S.; Ravishankar, N.; Rajamathi, M.; Pietzonka, C.; Harbrecht, B. J. Phys. Chem. B 2005, 109, 11468.
- (38) Ding, Y. S.; Xu, L. P.; Chen, C. H.; Shen, X. F.; Suib, S. L. J. Phys. Chem. C 2008, 112, 8177.
- Hosono, E.; Fujihara, S.; Honma, I.; Zhou, H. S. J. Mater. Chem.
- Zhao, Z. G.; Geng, F. X.; Bai, J. B.; Cheng, H. M. J. Phys. Chem. C 2007, 111, 3848.
- Geng, B. Y.; Zhan, F. M.; Fang, C. H.; Yu, N. J. Mater. Chem. **2008**, 18, 4977
- Lou, X. W.; Deng, D.; Lee, J. Y.; Archer, L. A. J. Mater. Chem. 2008, 18, 4397.

- 2008, 16, 4391.

 (43) Xu, R.; Zeng, H. C. J. Phys. Chem. B 2003, 107, 926.

 (44) Feng, J.; Zeng, H. C. Chem. Mater. 2003, 15, 2829.

 (45) Feng, J.; Zeng, H. C. J. Phys. Chem. B 2005, 109, 17113.

 (46) Zhang, H.; Wu, J. B.; Zhai, C. X.; Ma, X. Y.; Du, N.; Tu, J. P.; Yang, D. R. Nanotechnology 2008, 19, 035711.
- (47) Cong, H. P.; Yu, S. H. Cryst. Growth Des. 2009, 9, 210.

Figure 2. FESEM images of our three types of samples: (a) peanut-like, (b) capsule-like, and (c) rhombus CoCO₃ crystals. A typical XRD pattern of these CoCO₃ crystals is also displayed in (d).

tesque, Inc.] and 0.5 g of polyvinyl-pyrrolidone (PVP; MW = 40 000, K30, Fluka) were first dissolved in 20 mL of diethylene glycol (DEG; $C_4H_{10}O_3$; Sigma-Aldrich) at room temperature, followed by addition of a varying amount of urea (0.25–1.0 g; $CO(NH_2)_2$; Fluka) under vigorous stirring. Then the mixture was transferred to a Teflon-lined stainless steel autoclave and kept inside an electric oven at 200 °C for a certain reaction period, typically 12 to 21 h. After reactions, pink solid products of cobalt carbonate ($CoCO_3$) in the bottom of the autoclave were harvested, washed with deionized water and ethanol several times via centrifugation—redispersion cycles, and then dried in an oven at 80 °C for 12 h. In laboratory air, the thus-prepared $CoCO_3$ was converted to mesoporous tricobalt tetroxide (Co_3O_4) by thermal decomposition at 300 °C for 4 h with an electric furnace.

Crystallographic phases of the above prepared products were investigated by powder X-ray diffraction method (XRD) using a Shimadzu XRD-6000 diffractometer with Cu Kα radiation. Morphologies of samples were characterized by field-emission scanning electron microscopy (FESEM; JSM-6700F), selected area electron diffraction (SAED), transmission electron microscopy (TEM/SAED; JEM-2010, 200 kV), and high-resolution TEM (HRTEM/SAED; JEOL-2100F, 200 kV). Fourier transform infrared (FTIR) spectra were record for samples using the KBr powder technique (Bio-Rad FTS-135 FTIR spectrometer). Surface analysis of samples was carried out with X-ray photoelectron spectroscopy (XPS, AXIS-HSi, Kratos Analytical). A monochromated Al Ka (1486.6 eV) radiation was used as an excitation source, and the measurement was done with constant analyzer energy mode at 40 eV. All binding energies were referenced to the C 1s peak (284.6 eV) arising from surface hydrocarbons (or adventitious hydrocarbons). Thermogravimetric analysis (TGA; Shimadzu TGA-50) was also conducted to determine the composition of samples. The TGA measurements were carried out at a heating rate of 10 °C/min from 50 to 900 °C with an air flow rate of

 $100\,mL/min.$ Measurement of specific surface area and analysis of porosity for the Co_3O_4 products were performed through measuring N_2 adsorption—desorption isotherms at 77 K with a Quantachrome NOVA-3000 system.

The gas sensors were fabricated as follows. The as-prepared Co₃O₄ products were mixed with ethanol and hand-ground in an agate mortar to form black slurries. The prepared slurries were then laid uniformly on the surfaces of ceramic tubes used to form sensors. Two Pt electrodes were fabricated on the tubes near the two ends, and a heating resistance coil was inserted through the central space of the ceramic tubes. A similar device configuration for other sensors had been sketched in the literature. 48 The prepared sensors were then annealed at 300 °C for 2 h in a muffle furnace, followed by a 24 h aging process in laboratory air, as described earlier. 48 In our sensing measurements, the gas sensors were connected in series with a standard resistor. Under an applied voltage of 5 V, the voltage across the standard resistor was measured to evaluate the electrical resistance of the sensors. The resistance changed after putting the sensors into a gas chamber, which was installed with test gases at different concentrations. Ethanol sensing tests were carried out by injecting a certain volume of liquid ethanol calculated with an assumption that all the ethanol would be gasified. Furthermore, carbon monoxide sensing tests were also done by introducing a standard CO into the gas chamber. The sensing properties were investigated under a range of concentrations of target gases at 300 °C and ambient relative humidity of 57%.

Results and Discussion

Morphologies of the as-prepared CoCO₃ submicrometer crystals were examined with FESEM. Figure 2

⁽⁴⁸⁾ Liang, Y. X.; Chen, Y. J.; Wang, T. H. Appl. Phys. Lett. 2004, 85, 666.

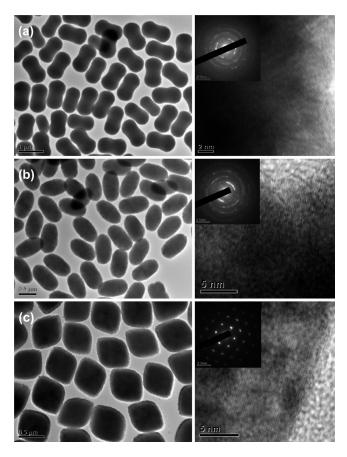


Figure 3. TEM images, HRTEM images and SAED patterns of our three types of samples: (a) peanut-like, (b) capsule-like, and (c) rhombus CoCO3 crystals.

displays some typical FESEM images of CoCO₃ products prepared with the present approach as a function of urea concentration (see Experimental Section). As reported, the CoCO₃ crystals are highly uniform with a diameter range at around 500 nm. Through changing the concentration of urea (Figure 2a-c), fine morphogenesis of CoCO₃ crystals has been achieved. In particular, peanutlike, capsule-like, and rhombus products can be synthesized with 0.25, 0.50, and 0.75–1.0 g of urea, respectively, while keeping other process parameters unaltered. In general, these crystal particles can be viewed as approximated forms of ellipsoid, and their packing is amorphous due to short aspect ratios, although some localized ordering can still be observed (Figure 2). The crystal structures of the samples were further characterized by TEM and HRTEM/SAED methods. Figure 3 shows the TEM/ HRTEM images and SAED patterns for the three types of samples reported in Figure 2. With the increase in urea in synthesis, crystallinity of the samples increases. In fact, single-crystalline CoCO₃ (rhombus submicrometer crystals, see Figure 3c and the related SAED pattern) could be obtained when the urea content was increased to a range of 0.75-1.0 g (i.e., mole ratio uera/Co²⁺ = 12.5-16.7). When the urea content was lower, the resultant peanutlike (i.e., mole ratio uera/ $Co^{2+} = 4.2$) and capsule-like $CoCO_3$ (i.e., mole ratio uera/ $Co^{2+} = 8.3$) became more polycrystalline, as shown in the ring-like structures of their respective SAED patterns, although the lattice

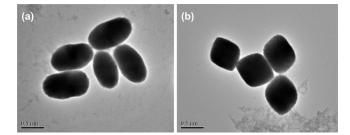


Figure 4. TEM images of (a) capsule-like and (b) rhombus CoCO₃ crystals synthesized after 6 h of reaction, together with some amorphous deposits in the image backgrounds.

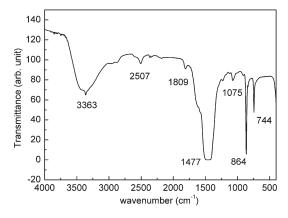


Figure 5. Typical FTIR spectrum of the CoCO₃ crystals prepared in this

fringes in the HRTEM images were all measured at a value of $d_{104} = 2.7 \pm 0.1$ Å. Nonetheless, the long-range order of crystal lattices in the two samples is still present, since coherent regions of lattice fringes in the images are fairly large (e.g., across entire HRTEM images in Figure 3a,b) and brighter segments in the diffraction rings can be observed, which implies a substantial amount of crystallites in these two samples are crystallographically oriented. 49-53 The crystal phase of these CoCO₃ samples was also identified by powder XRD technique; a representative diffraction pattern is shown in Figure 2d. As expected, the peaks can be indexed to the rhombohedral phase of CoCO₃ (space group R3c, JCPDS PDF file no. 11-0692; $a_0 = 4.659 \text{ Å}$ and $c_0 = 14.96 \text{ Å}$), and the absence of other diffraction peaks affirms the generation of phase-pure CoCO₃ submicrometer crystals.

As revealed by the above characterization, the CoCO₃ submicrometer crystals were formed by aggregative attachment of even smaller crystallites during our syntheses. All three CoCO₃ samples with high product uniformity could be prepared respectively with reaction times over a range of 12 to 21 h. The formation pathway of these CoCO₃ submicrometer crystals is explained by a mechanism of precipitation—dissolution—renucleation growth—aggregation. In an initial stage, primary precipitates

⁽⁴⁹⁾ Penn, R. L.; Banfield, J. F. Science 1998, 281, 969.(50) Pacholski, C.; Kornowski, A.; Weller, H. Angew. Chem., Int. Ed. **2002**, 41, 1188.

Liu, B.; Zeng, H. C. J. Am. Chem. Soc. 2003, 125, 4430.

Penn, R. L. J. Phys. Chem. B 2004, 108, 12707 and the references

⁽⁵³⁾ Zeng, H. C. Int. J. Nanotechnol. 2007, 4, 329.

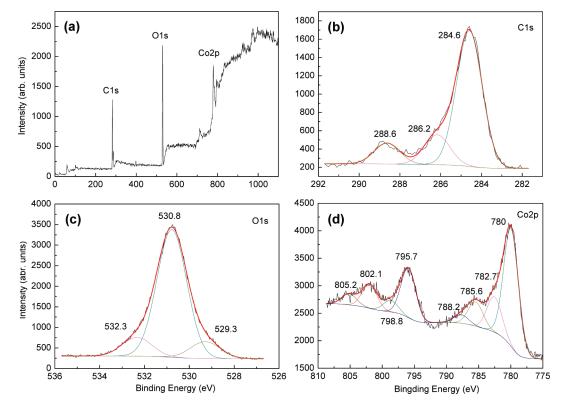


Figure 6. Representative XPS spectra of the CoCO₃ crystals: (a) wide scan, (b) C 1s, (c) O 1s, and (d) Co 2p.

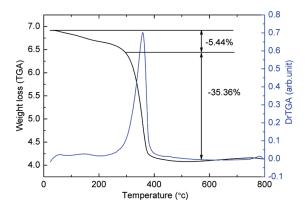


Figure 7. TGA and DrTGA curves of the CoCO₃ crystals.

were formed instantaneously when supersaturation in the solution phase was reached. The process was followed by dissolution of unstable precipitates which was then turned into renucleation and growth of crystallites. 47,54–56 The resultant crystallites were aggregated and/or attached into final crystals, as commonly described in mineralization processes. 52,53 In this agreement, the proposed pathway is supported by our time-dependent experiments. As shown in Figure 4, when the reaction time was reduced to 6–9 h, the peanut-like product could not be prepared, whereas the capsule-like or rhombus products were already present. Furthermore, primary

precipitates (amorphous) accompanied with the desired crystal products (Figure 4) can be detected, which could be converted to the $CoCO_3$ phase completely when the reaction time was prolonged. The carbonate anions in the synthesis were supplied from urea. When heated at about 90 °C, urea is burst thermally into CO_2 and OH^- (eq 1). Because the formation of carbonate largely depends on the dissolution of CO_2 gas (eq 2) under closed reaction conditions, $CoCO_3$ becomes more difficult to form when the amount of urea supply in the synthesis is on the lower side (eq 3). As compared in Figure 4, the formation of peanut-like $CoCO_3$ was indeed the most difficult, although the urea used in the synthesis (mole ratio uera/ $Co^{2+} = 4.2$) still exceeded its stoichiometric ratio.

$$CO(NH_2)_2 + 3H_2O \rightarrow 2NH_4^+ + CO_2 + 2OH^-$$
 (1)

$$2NH_4^+ + CO_2 + 2OH^- \rightarrow 2NH_4^+ + CO_3^{2-} + H_2O$$
 (2)

$$Co^{2+} + CO_3^{2-} \rightarrow CoCO_3 \tag{3}$$

To reveal the chemical composition and bonding situation of pink-colored CoCO₃ crystals, the FTIR investigation has been carried out. Figure 5 presents a typical FTIR spectrum of the as-prepared CoCO₃ samples. The band at around 3442 cm⁻¹ is assigned to the stretching vibration of the O–H group of surface adsorbed molecular water and hydrogen-bound O–H, and the sharp

⁽⁵⁴⁾ Gao, A. M.; Hu, J. S.; Liang, H. P.; Song, W. G.; Wan, L. J.; He, X. L.; Gao, X. G.; Xia, S. H. J. Phys. Chem. B 2006, 110, 15858.
(55) Hou, B; Li, Z. J.; Xu, Y.; Wu, D.; Sun, Y. H. J. Electroceram. 2006,

⁽⁵⁵⁾ Hou, B; Li, Z. J.; Xu, Y.; Wu, D.; Sun, Y. H. J. Electroceram. 2006 16, 127.

⁽⁵⁶⁾ Yu, S. H.; Cölfen, H.; Antonietti, M. J. Phys. Chem. B 2003, 107, 7396.

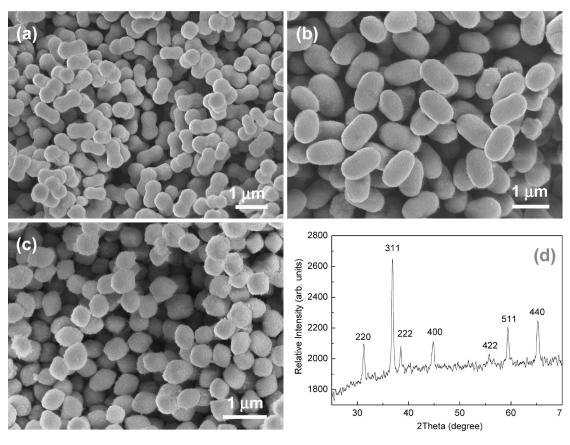
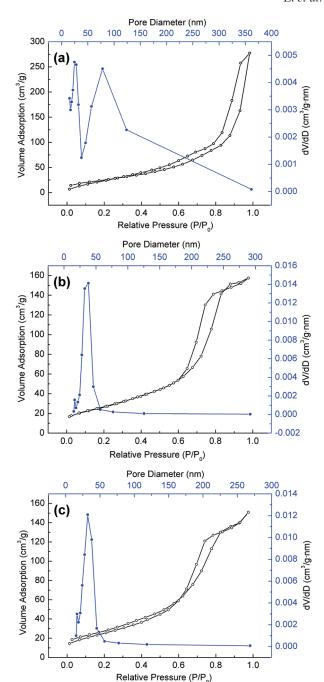


Figure 8. FESEM images of our Co₃O₄ spinel oxide samples prepared from three solid precursors: (a) peanut-like, (b) capsule-like, and (c) rhombus CoCO₃ crystals after a heat-treatment at 300 °C. A typical XRD pattern of these Co₃O₄ crystals is also displayed in (d).

peak centered at around 3363 cm⁻¹ is attributed to the O-H groups interacting with carbonate anions of the $CoCO_3$. 15,47 The presence of CO_3 ²⁻ in the cobalt carbonate sample is evidenced by its fingerprint peaks of D_{3h} symmetry at 1477, 1075, 864, and 744 cm⁻¹, which are assigned to vibrational modes of $\nu_3(E')$, $\nu_1(A'_1)$, $\nu_2(A''_1)$ and $\nu_4(E'')$, respectively, according to normal modes of vibration of planar XO_3 molecules/ions (X = C in the present case);⁵⁷ the peak located at 2507 cm⁻¹ is also commonly associated to a vibrational mode of carbonate anion.⁵⁷ The weak peak at 1809 cm⁻¹ is attributed to an overtone or combination band composed of contributions from the combination of some vibrational modes of the carbonate groups and divalent metal ions.⁵⁷ To have further information on surface composition of the samples, XPS analysis has been performed in this work. Figure 6a shows a wide scan spectrum of the as-prepared sample. The peaks located at 284.6, 531.8, and 780.8 eV are assigned to the characteristic peaks of C 1s, O 1s, and Co 2p, respectively. 58 As expected, the above sharp peaks confirm the abundant existence of carbon, oxygen, and cobalt elements on the sample surfaces of CoCO₃. The peaks at 288.6 eV in the C 1s spectrum is assigned to the carbon element in association with oxygen in the carbonate ions.⁵⁸⁻⁶⁰ The peaks at 284.6 and 286.2 eV can be attributed generally to surface-adsorbed hydrocarbons and their oxidative forms (e.g., C-OH). 58-60 The predominant O 1s peak at 530.8 eV belongs to the lattice oxygen of CoCO₃, and the other two peaks at 529.3 and 532.3 eV can be assigned to oxygen species in surfaceadsorbed DEG and H₂O molecules, respectively. 58-60 The core level peaks of Co 2p at 780.0 and 795.7 eV correspond to Co 2p_{3/2} and Co 2p_{1/2} of CoCO₃ and its surface oxidized product Co₃O₄. The Co 2p peaks at 782.7 (Co $2p_{3/2}$) and 798.8 (Co $2p_{1/2}$) eV can be assigned to the CoO surface phase which is in equilibrium with Co₃O₄. ⁵⁸⁻⁶⁰ The remaining smaller peaks at higher binding energies (785.6, 788.2, 802.1, and 805.2 eV) are satellite shake-ups of the assigned components, respectively. The thermal behavior of the CoCO₃ samples has also been investigated by TGA technique, as presented in Figure 7. The total weight loss of the sample in the heattreatment was determined to be 40.8%. The first weight loss of about 5.44% was mainly due to the elimination of absorbed/trapped water molecules or surfactants in the sample. When the temperature is above 300 °C, the rate of weight loss became fast, which could be attributed to the decomposition of CoCO₃ into Co₃O₄ and CO₂ in

^{(57) (}a) Ehlsissen, K. T.; Delahaya-Vidal, A.; Genin, P.; Figlarz, M.; Willmann, P. J. Mater. Chem. 1993, 3, 883. (b) Tatzber, M.; Stemmer, M.; Spiegel, H.; Katzlberger, C.; Haberhauer, G.; Gerzabek, M. H. Envoron. Chem. Lett. 2007, 5, 9.

Wagner, C. D.; Riggs, W. M.; Davis, L. E.; Moulder, J. E.; Muilenber, G. E. *Handbook of X-ray Photoelectron Spectroscopy*; Perkin-Elmer: Eden Prairie, MN, U.S.A., 1979.


⁽⁵⁹⁾ Xu, R.; Zeng, H. C. Langmuir 2004, 20, 9780.(60) Chen, H. M.; Liu, R.-S.; Li, H. L.; Zeng, H. C. Angew. Chem., Int. Ed. 2006, 45 2713.

the presence of oxygen from the flowing air stream of TGA:

$$6\text{CoCO}_3 + \text{O}_2 \rightarrow 2\text{Co}_3\text{O}_4 + 6\text{CO}_2$$
 (4)

The actual weight loss of $CoCO_3$ to Co_3O_4 in this thermal process was about 35.36%, which is slightly higher than the theoretically calculated value (32.51%), noting that some deep-trapped organic matter (PVP and/or DEG) was also burnt over this temperature range.

After being calcined at 300 °C for 4 h, the as-synthesized CoCO₃ crystals were converted completely into phase-pure cobalt oxide Co₃O₄. Figure 8a-c presents FESEM images of the three different types of Co₃O₄ products from this oxidative heat-treatment. The pristing morphologies of the CoCO₃ crystals were well preserved in their oxide products, and no appreciable shape and size changes were observed. However, their surfaces seem to become rougher, suggesting the generation of porous Co₃O₄ through the calcination. The crystallographic phase of this spinel oxide was confirmed by the XRD method, as displayed in Figure 8d. All the diffraction peaks can be assigned to the cubic phase of Co₃O₄ (space group $Fd\overline{3}m$; lattice constant $a_0 = 8.0837 \text{ Å}$; JCPDS PDF file no. 42-1467). ⁴³⁻⁴⁵ The textural properties of the Co₃O₄ samples were further investigated by measuring adsorption/desorption isotherms of nitrogen at 77 K, as shown in Figure 9. The hysteresis features of peanut-like Co₃O₄ sample at the relative pressures of 0.6–0.9 should be classified as type H3 loop, which does not show any limiting adsorption at the higher side of this relative pressure range (Figure 9a), suggesting the presence of aggregates of plate-like particles which give rise to slitshaped pores.⁶¹ The following abrupt increase in the curves at high relative pressure, above 0.9, can be ascribed to the multilayer adsorption of nitrogen in the macropores formed among the resultant Co₃O₄ nanocrystallites. From the pore distribution curves, it can also be found that the peanut-like Co₃O₄ nanostructures have a bimodal pore distribution using the Barrett-Joyner-Halenda (BJH) method, that is, smaller pores in region of 20-30 nm, and the larger pores ranging from 40 to 120 nm. The specific surface area using the Brunauer— Emmett-Teller (BET) method for this sample is $148.9 \text{ m}^2/\text{g}$. Similarly, the isotherms of capsule-like and rhombus Co₃O₄ products also showed mesoporous structural characteristics, as shown in Figure 9b,c. Specific surface areas for the latter two samples are 140.4 and 143.3 m²/g, respectively. Different from the peanut-like Co₃O₄ sample, however, capsule-like and rhombus Co₃O₄ nanostructures only show a monomodal pore distribution, which ranges from 20 to 50 nm and from 18 to 45 nm, respectively, for the two samples. The hysteresis loops of the capsule-like and rhombus Co₃O₄ products both also belong to type IV isotherms, but they have H1 type hysteresis loops instead of H3 type, which are known

Figure 9. Nitrogen physisorption isotherms and pore size distribution curves of (a) peanut-like, (b) capsule-like, and (c) rhombus mesoporous Co_3O_4 samples (also see Figure 8).

from the formation of agglomerates or compacts of approximately uniform crystallites in fairly regular arrays and hence the narrow distributions of the resultant pore size. ⁶¹

As a result of the large surface areas and mesoporosity revealed in the Co₃O₄ samples, these nanostructured oxides might be advantageous for gas sensing applications. Therefore, conductometric properties of mesoporous Co₃O₄ samples to ethanol and carbon monoxide have also been investigated in this work. Figure 10i presents our ethanol sensing results from the porous Co₃O₄ at a working temperature of 300 °C. The response curves show the *on* and *off* characteristics of the three sensors when they were inserted into and taken out of the gas chamber. With increasing

⁽⁶¹⁾ Sing, K. S. W.; Everett, D. H.; Haul, R. A. W.; Moscou, L.; Pierotti, R. A.; Rouquerol, J.; Siemieniewska, T. *Pure Appl. Chem.* **1985**, *57*, 603.

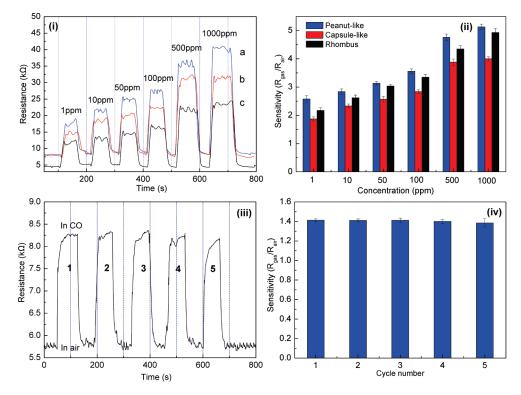


Figure 10. Gas-sensing applications: (i) ethanol sensing curves of the synthesized mesoporous Co₃O₄ (a: peanut-like, b: capsule-like, and c: rhombus) with different ethanol concentrations (1 to 1000 ppm), (ii) sensitivities calculated from (i), (iii) carbon monoxide sensing curves of peanut-like mesoporous Co₃O₄ with a CO concentration at 10 ppb, and (iv) sensitivities calculated from (iii).

ethanol concentrations, the resistance of sensor increased monotonically. In particular, the sensitivity (Figure 10ii) is proportional to the specific surface areas, that is, 148.9, 140.4, and 143.3 m^2/g , of the three samples. The peanutlike Co₃O₄ shows a slightly better performance than the other two Co₃O₄ nanostructures despite having the same detection limit. The better response in the peanut-like Co₃O₄ can be associated to the presence of additional macroporous structure in this sample (Figure 9a). For metal-oxide semiconductor based gas sensors, changes in electrical resistance are mainly caused by the adsorption and desorption of oxygen species and targeted analytes on the surface of sensing materials. Therefore, the larger surface area of sensing materials normally results in more active sites on the surface for chemical or physical interactions. On the other hand, bigger pore size would ease gaseous molecules to enter the pores and migrate to active sites. Compared to those realized from n-type semiconductor oxides such as ZnO, 62,63 In₂O₃, 64,65 and SnO₂, 66,67 our Co₃O₄ sensors have exhibited comparable sensitivity $(R_{\rm gas}/R_{\rm air})$, reversibility, and an even lower detection limit. As a comparison, the commercial breath analyzers (mainly using *n*-type oxides) only have a detection limit of 10 to 200 ppm whereas our sensors reduce this limit down

to 1 ppm (Figure 10i). Generally speaking, the difference in sensitivity between p-type and n-type semiconductor oxides lies on different conductometric mechanisms. For instance, in the *n*-type semiconductor oxides, the electron conduction is dominant. When such a sensor is operated in air, oxygen molecules adsorb on the surface of sensing material and capture free electrons from the surface to form negatively charged ions $(O^-, O_2^-, and O^{2-})$, which results in the increase of resistance of gas sensor due to the depletion of carrier electrons. When the sensor is put in the chamber containing ethanol vapor, the adsorbed oxygen anions will react with ethanol molecules and release the electrons back to the conduction band of *n*-type oxides, leading to a sharp decrease of resistance. On the contrary, fewer oxygen molecules will adsorb on the surfaces of p-type sensing oxides because positive holes are the major charge carriers and the surface concentration of electrons is lower compared to that in the *n*-type oxides. Nonetheless, the adsorption of gaseous oxygen results in decrease of electrical resistance due to a better separation of holes from the electrons. When a p-type sensor is exposed to ethanol gas, electrons are released back to the conduction band and recombine with holes, which decrease the carrier concentration (holes) and thus increase the sensor resistance (Figure 10iii). To further extend the sensing applications of our Co₃O₄, we also investigated its carbon monoxide sensing properties (Figure 10iii,iv). 68,69 In Figure 10iii, the CO sensing

⁽⁶²⁾ Jing, Z. H.; Zhan, J. H. Adv. Mater. 2008, 20, 4547.

⁽⁶³⁾ Li, C. C.; Du, Z. F.; Li, L. M.; Yu, H. C.; Wan, Q.; Wang, T. H. Appl. Phys. Lett. 2007, 91, 032101.

⁽⁶⁴⁾ Li, C.; Zhang, D. H.; Lie, B.; Han, S.; Liu, X. L.; Zhou, C. W. J. Phys. Chem. B **2003**, 107, 12451.

⁽⁶⁵⁾ Li, E.; Cheng, Z. X.; Xu, J. Q.; Pan, Q. Y.; Yu, W. J.; Chu, Y. L. Cryst. Growth Des. 2009, 9, 2146.

⁽⁶⁶⁾ Comini, E.; Faglia, G.; Sberveglieri, G.; Pan, Z. W.; Wang, Z. L. Appl. Phys. Lett. 2002, 81, 1869.

⁽⁶⁷⁾ Wang, Y. L.; Jiang, X. C.; Xia, Y. N. J. Am. Chem. Soc. 2003, 125, 16176.

⁽⁶⁸⁾ Li, N.; Tan, T. C.; Zeng, H. C. J. Electrochem. Soc. 1993, 140, 1068.
(69) Cantalini, C.; Post, M.; Buso, D.; Guglielmi, M.; Martucci, A. Sens. Acuators, B 2005, 108, 184.

performance of the peanut-like Co₃O₄ sample has been presented as a dynamic responsive curve. When the sensor was exposed to 10 ppb of CO, the resistance promptly increased and then reached a relatively stable value. When the sensor was switched to air atmosphere again, the resistance dropped sharply to the baseline. A total of five periods have been tested at this CO concentration, and the response and recovery time is only about 20 s. The threshold limit of CO for the human body is only about 3-5 ppm, and it becomes dangerous if a CO concentration is higher than 15 ppm. The detection limit in Figure 10iii is very low, compared to what has been reported in the literature. ^{29,54,68,69} Using hierarchically structured Co₃O₄, for example, the sensitivity of the sensors was about 1.8 when the concentration of CO was 1000 ppm.⁵⁴ Therefore, we have also demonstrated that the mesoporous Co₃O₄ with submicrometer particle size is a promising material for future development of CO gas sensors, apart from its good sensing ability for ethanol.

Conclusions

In summary, we have developed a polyol based approach for preparation of highly uniform submicrometer crystals of CoCO₃ with the assistance of PVP in DEG. Under batch conditions, by varying the concentration of urea in synthesis, peanut-like, capsule-like, and rhombus CoCO₃ crystals have been synthesized respectively at

200 °C for a period of 12-21 h. On the basis of our time-dependent synthetic experiments and materials characterization, the formation of these CoCO₃ crystals can be attributed to a precipitation-dissolutionrenucleation-growth-aggregation process. In air atmosphere, uniform metal oxide particles of Co₃O₄ have also been obtained from their respective CoCO₃ submicrometer crystals after oxidative thermal decomposition at 300 °C for 4 h. Our surface textural/morphological investigation further reveals that the thermally converted Co₃O₄ products possess mesoporosity as well as certain macroporosity and essentially maintain their pristine CoCO₃ morphologies unaltered. Because high crystal uniformity and high specific surface areas (140–149 m²/g) have been achieved for this cobalt spinel, the gas sensors fabricated from the mesoporous Co₃O₄ powders have shown excellent sensing properties to ethanol and carbon monoxide, especially the low detection limits found for both gases.

Acknowledgment. The authors gratefully acknowledge the financial supports provided by the National University of Singapore, Economic Development Board, Singapore, and the King Abdullah University of Science and Technology, Saudi Arabia. C.C.L. would also like to thank the China Scholarship Council (CSC) for providing his exchange scholarship for Ph.D. study at the National University of Singapore.